

Development Trends in High-Power Free-Electron Lasers

Yehoshua Socol

07.12.2011

Acknowledgements

C. Brau	Vanderbilt	US
D. Douglas	JLab	US
B. Militsyn	ASTeC	UK
D. Ratner	SLAC	US
N. Vinokurov	BINP	Russia
R. Wünsch	FZD	Germany

H. Bluem, A. Todd
Advanced Energy Systems, Inc.
C. Piel
B. van der Geer
J. Shwartz
Northrop Grumman (ret.)

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

Though called "laser", FEL is essentially a big electron-beam vacuum tube

 Though optical or even hard X-ray radiation is emitted, the FEL is fully described by classical electrodynamics & mechanics (relativistic)

FEL – operation principle

FEL wavelength

FEL wavelengthRelativistic kinematics – speed vs. energy $\gamma = E/m_ec^2 - Lorentz factor$ $m_ec^2 = 0.511 \text{ MeV}$
electron rest mass $\gamma = 1 / [1 - (v/c)^2]^{1/2}$ $v = c [1 - 1/\gamma^2]^{1/2}$

Energy	Electron speed
	v/c
$m_e c^2 + 10 \text{ keV}$	0.20
$m_{e}c^{2}$ +100 keV	0.55
$1 \text{ MeV} = m_e c^2 + 489 \text{ keV}$	V 0.86
10 MeV	0.999
100 MeV	0.99999

FEL wavelength

FEL – operation principle

Vanderbilt University animation

http://www.vanderbilt.edu/exploration/multimedia/flash/fel/fel works.htm

FELIX IR user facility (Netherlands)

 $\lambda = 3-250 \mu m$ >100kW peak ~10W average

FELIX IR user facility (Netherlands)

FEL Advantages

Tunability 10 GHz - 1Å
 Excellent beam quality M²<1.1
 High peak power (10+ MW)
 All-electric

Challenges
No industrial experience
Low efficiency aim: 10%
Ionizing radiation
Size, cost

FEL spectral coverage

FEL technology: X-band (10 GHz) => X-rays (1 Å=0.1nm) Single FEL machine: \sim 1.5-2 decades of λ (with 2-3 undulators)

Areas of interest

X to VUV0.1 -200 nmMid- to far-IR1.5-1000 μm

FEL power

micropulse (20 ps) 1-10+ MW
 MACROpulse (10 µs) 100-500 kW
 Average 0.1-100 kW

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

FEL maturity – signs

New FEL user centers
Scale-up ×40 in 2009 (SLAC)
First commercially-built e-beamline
US Navy -> industry (Boeing)

Operating FELs – for Scientific Research

X/UV FEL facilities

1./	LCLS – SLAC	US
2.	FLASH – DESY Germany	
3.	European UV/VUV FEL at Elettra	Italy
4.	Duke University FEL Laboratory	US
	TR EEL Eacilities	
	LKILLI demense	
1.	Jefferson Lab	US
2.	FELBE – FZD	Germany
3.	FELIX – FOM	Netherlands
4.	CLIO – LCP (Orsay)	France
5.	AIST/Kawasaki	Japan
6.	Budker Institute (BINP)	Russia

FEL research facilities – in construction

X/UV

SCSS – SPring-8 Japan 1. **European XFEL** Germany 2. Swiss FEL – PSI Switzerland 3. 4. MAX-IV Sweden 5. FERMI@ Elettra Italy IR Fritz Haber Institute (FHI) Germany 1. FLARE – Radboud University Netherlands 2. ALICE – Daresbury UK 3.

FLARE THZ FEL

FLARE – Radboud University, Nijmegen, Netherlands Wavelength: 0.1-1.5 mm

Scale-up: LCLS (2009) **Record-short** wavelength: FLASH (DESY) LCLS =6.5 nm => 0.15 nm λ $E_{photon} = 0.2 \text{ keV} = > 8 \text{ keV}$ Scale-up ×40 in one blow FEL technology is well understood!

LCLS at SLAC

1 km

Wavelength: 4-500 µm P(peak)~10 MW P(av)~10 W *In commissioning*

Turn-key e-beamlime

Putting Accelerator Technology to Work

FEL Progress 1990-2010

Sub-system	Progress	
Injection	Considerable	
Acceleration	Major	
FEL interaction	Considerable	
Reliability up	RF sources e-beam control	
Cost down	energy-recovery multi-turn accelerating RF sources control hardware	

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

FEL Subsystems

Electron acceleration system: RF-linac

RF-linac pulse structure all numbers – for illustration only

FEL gain regimes

FEL single-pass gain (G)
G = [P(out) / P(in)]_{SINGLE PASS}

Low gain G ~ 20-30%

• High (exponential) gain $G > 10^3$

FEL – operation modes

Oscillator

- Low-gain ~20% per pass
- High-gain ~10³ per pass

Regenerative Amplifier FEL - RAFEL

- Amplifier
 - Seeded
 - Self-amplified spontaneous emission SASE

e-beam & optical pulses oscillator / RAFEL

FEL – output power

 $P(IR) \sim \eta \times P(e\text{-beam})$

$P(e-beam) = I U \approx I E/e$ $E - e-beam \ energy$

U=50MeV, I=1A => P(e-beam) =50 MW (!)

FEL – extraction efficiency η

• Low-gain regime: oscillator $P(IR) \approx P(e-beam) / 2N_w$ $\eta \approx 1/2N_w \sim 2-3\%$

• High-gain regime: amplifier or "Regenerative Amplifier" $P(IR) \approx P(e\text{-beam}) \times \rho \quad (\rho - \text{"Pierce parameter"})$ $\eta \approx \rho < 1\%$

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

Wall-plug efficiency

Goal: 10% *P(IR) ~ η×P(e-beam) η ~ 2-3%* for oscillator <1% for amplifier

 Challenges:
 1. Low extraction efficiency (e-beam to optical energy)
 2. High RF losses in accelerator (cavity load)

Increasing Efficiency

Low extraction efficiency

- Increasing extraction
- e-beam energy recovery

High RF losses in accelerator

Decreasing RF losses

1. Increasing extraction: Tapered undulator

2. e-beam Energy Recovery ERL – Energy Recovery Linac

20% RF-to-IR efficiency
<= 2% extraction + 90% recovery
50% DC-to-RF conversion =>

Overall efficiency ~10%

3. Decreasing RF losses

RF power = e-beam load + Cavity Load (CL) => loss

$CL = |E|^2 L / \rho = U^2/R$ $R = \rho L$ $\rho \sim 5-10 \text{ M}\Omega/\text{m}$ at 180 MHz $\rho \sim 50-65 \text{ M}\Omega/\text{m}$ at 3 GHz (S-band) S-band: E=50MeV L=2m => CL = 20 MW (!)w/o current ! Solutions Superconducting cavities

Multi-turn acceleration/recovery Β.

A. \

A. SRF – superconducting RF linac

Drawbacks
Higher cost (may be ×10)
Power for cryo-cooling (~50kW CW for 10MeV)
Bulky, low robustness

B. "Warm" multi-turn Energy-Recovery Linac (ERL)

Cavity load (CL) = U²/R
 2-turn ERL: 75% decrease in CL
 U₂=U₁/2 =>
 CL₂ = CL₁/4

 $CL_3 = CL_1/9$ $CL_4 = CL_1/16$

Figure 1: Scheme of the accelerator-recuperator based FEL. 1 - injector, 2 - accelerating RF structure, 3 - 180-degree bends, 4 - undulator, 5 - beam dump, 6 - mirrors of the optical resonator.

Multi-turn Energy-Recovery Linac (ERL)

Advantages Reduced size Reduced RF power Reduced cost Problem Complicated e-beam optics

Figure 1: Scheme of the accelerator-recuperator based FEL. 1 - injector, 2 - accelerating RF structure, 3 - 180-degree bends, 4 - undulator, 5 - beam dump, 6 - mirrors of the optical resonator.

World-first multi-turn ERL FEL

Budker Institute of Nuclear Physics, Russia Courtesy Prof. Vinokurov N.A.

Multi-turn separate-track ERL FEL

Y. Socol et al. *Phys. Rev. Spec. Topics – Accelerators & Beams 2011* with Budker INP (Russia) Helmholtz Zentrum Berlin

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

FEL Subsystems

"Bottlenecks" for high-power FEL

"Bottlenecks" for high-power FEL

Injector

- High pulse current (>25 A)
- Low energy spread (rms<0.5%)
 - Medical/industrial e-beams: rms ~ 5-10%
- Low angular spread ($\Delta \theta \Delta r << \lambda$)

IR Optics

- High power density ($> 10 \text{ MW} / \text{ cm}^2$)
- Presence of ionizing radiation

Why injector ?

Space-charge e-beam spread
 "Emittance growth" –

 e-beam quality down

 Important at low energies

Why injector ? Space-charge: low energies

Injector => cathode

Thermionic cathode Limited current Limited e-beam quality acceptable for IR-FEL

Photo-cathode

- Low working time (~ hours)
- Low stand-by time (days to weeks)
- Size, complexity, cost (~M\$)

Los-Alamos photo-cathode gun

IR Optics – power handling Problem: high flux + ionizing radiation

Anticipated solutions Beam-expanding at grazing incidence

D. Dowell, IEEE J. Quant. Electr. 1991

Metal mirrors or gratings

System: power-gain trade-off

More system problems (partial list)

Vibrations

- Optical resonator
- RF-linac
- Liquid helium (for cryo-systems)

Ionizing radiation

lonizing radiation problem

P(IR)=1MW

I=1A (E=50MeV η =2%) Interception 10⁻⁴ => I(eff)=0.1 mA D=D' I(eff)t/L² D'(50MeV)~10⁵ R m²/A s

t = 10 s
L= 10 m - distance to crew members

D (pulse) = 1 R D (permit) = 5 R/year! typical shielding: 10-20 cm Fe (Pb) 1000-2000 kg/m²

Radiation risk in perspective

350 R exposure: LD₅₀ (if no treatment)
 100 R

First signs of radiation illness – vomiting, fatigue, nausea Life expectancy 82 -> 81.5 years 10 R Life expectancy 82 -> 81.95 (may be)

Radiation – curious facts

 I'm radioactive; You're too!
 ¹⁴C is present in air, plants & all living

US FDA: non-radioactive spirits – not suitable for human consumption!

Contents

FEL basics FEL technology – status Subsystems and working regimes Increasing efficiency System view Applications Conclusions

Navy FEL Program Goal : 100kW CW Cost : \$ 163M 2011: \$ 23M Boeing Future: 1MW CW

spectro

Beattle Management Buikhead Beam Control System Nose-Mounted Lasers (2) Beam Control Turret Active Ranging System (CQ, Laser)

Airborne Laser (ABL) COIL

US Navy FEL Program

Thomas Jefferson National Accelerator Facility

Year	2004	2006
Power (average), kW	10	14.2
Wavelength, µm	6.0	1.6
Duration, s	~20	~30
Achieved	once	once

US Navy FEL Program Goal: 100kW CW (lab prototype) Cost: \$ 163M 2009-2010: 2 x 7 M\$ to Boeing & Raytheon \$23M 2011: to Boeing (design only)

Final goal: 1MW CW

13.5-nm FEL for EUV lithography

Y. Socol et al. Phys. Rev. ST Accel. Beams 14, 040702 (2011).

with Budker INP (Russia)

Helmholtz Zentrum Berlin

Photo-chemistry

- Surface treatment
- Nanotube synthesis
- Isotope separation
- ?

FEL advantages
Tuned photons in IR-UV
2-photon reactions
Ultra-short (<1ps) pulses

Anticipated trends – high-power

"It is difficult to make predictions, especially about the future" Mark Twain ?

 Warm (normal-conducting) accelerators

Thermionic cathodes

Conclusions FEL – unique tunable all-electric laser Breakthrough 2009-10: 1) technological maturity proven 2) multi-turn scheme => reduced size, weight, cost Further progress anticipated