

Yehoshua Socol

Terahertz (THz) Technology and Applications

Contents

" Introduction

- " Commercial systems and components
- " Spectral signatures
- " Case study: Avnet-37 project
 - Summary and Outlook

Acknowledgements

Prof. B. Kapilevich
Prof. N. Vinokurov
Dr. N. Weiss
Dr. M. Manela
Dr. S. Zvyagin
Mr. M. Lebel

Ariel UC **Budker INP ELTA Systems Ltd. RAFAEL** Ltd. **FZD** - Dresden Ministry of Industry & Trade, Israel

THz radiation

THz radiation

Present Applications

- " Solid-State physics: Spectroscopy
- " Astrophysics & Planet Science: Molecular Spectroscopy
- " Earth science: Upper atmosphere sensing from satellites

THz radiation

Potential Applications (after P. Siegel, Caltech)

- " Biochemistry: Composition of Biomaterials, Spectroscopy
- " Biology: Changes of Conformational State
- " Chemistry: Molecular Binding States/Fast Reactions
- " Electronics: High speed circuits, Visualizing Charge
- " Genetics: Gene Sequencing
- Mathematics: Scattering (RADAR Cross-Section & Modeling)
 Medical Diagnostics: Disease States
- Pharmaceuticals: Isomer identification/Tablet integrity
- " Physiology: Tissue Identification/Distinguishing Disease
- " Reconnaissance: Imaging through smoke
- " Safety: Chem & Biohazard Identification/Plume Detection
- " Security: Hidden Weapons/Contraband detection

Contents

Introduction

- " Commercial systems and components
- " Spectral signatures
- " Case study: Avnet-37 project
- " Summary and Outlook

Sources

•Thermal Radiation
•BWO
•RF up-converter
•Beat frequency
•Pulse laser
•Free Electron Laser

Detectors

•Thermal

THz

(pyro-, bolometers)

•RF down-converter

•Quantum

THz systems evolution

Considerable progress 2005-2008

THz systems performance

ThruVision

Distance: 3-25 m Resolution: ~ cm Numerical example:

 $\lambda = 0.3 \text{ mm} (1 \text{ THz})$

F# = 1

d = 5 m f = 5 cm

Resolution = λ F# d / f = 3 cm

THz Components: Sources Vendors (sample)

Thermal Radiation BWO **RF up-converter** Beat frequency Pulse laser Free Electron Laser NL, DE, US, RU

(passive)

Microtech Instr. Virginia Diodes Topica **Picometrix**

THz Source - example Tripler up to 1.7 THz

Contact VDI today for specifications and quotation details.

Virginia Diodes, Inc., Ph:434.297.3257, FAX:434.297.3258, www.virginiadiodes.com, VDIRFQ@virginiadiodes.com

Contents

" Introduction

- " Commercial systems and components
- ' Spectral signatures
- " Case study: Avnet-37 project
 - Summary and Outlook

THz Spectral Signatures

Signatures' Representations **Dielectric Characteristics**

Theory: dielectric properties fully described by complex dielectric constant $\varepsilon = \varepsilon' + i \varepsilon''$ (D = εE)

Practice: other characteristics are more convenient

Complex refraction index $n' + i n'' = n + i \kappa = \sqrt{(\epsilon' + i\epsilon'')}$

Intensity I(x) decay with depth x = I(x) = I(0) exp(-ax)Absorption coefficient

 $a = 4 \pi \kappa / \lambda$ $\overline{n''} = \overline{\kappa} = a \lambda / 4\pi$

radiation wavelength (in vacuum) λ

Difficult to measure Very rare in literature

D.J.Cook, B.K.Decker and M.G.Allen PSI-SR-1196 (2005)

Understanding spectral shapes Optical Resonances

Understanding spectral shapes Optical Resonances $\epsilon = 1 + (N_f e^2 / \epsilon_0 m [\omega^2 - \omega_0^2 - i \gamma \omega])$ $n = \sqrt{\epsilon}$

n = n' + i n''Complex refraction indexn'refractionn''absorption $\varepsilon = \varepsilon' + i \varepsilon''$ Complex dielectric constant

m,e – electron mass, charge N_f – resonance strength $\gamma = \omega_0 / Q$ (analog of Q-factor in RF)

Theory – complex ε

Theory – complex n

66

Comparison with Experiment

Simulation

Understanding spectral shapes Optical Resonances

<= n'' ~ f

Why **linear** trend in absorption?

Contents

" Introduction

- " Commercial systems and components
- " Spectral signatures
- ' Case study: Avnet-37 project
 - Summary and Outlook

Avnet-37 Project

Detection of Concealed Objects

Israeli Ministry of Industry & Trade

THz Detection sector: Ariel UC / ELTA Systems Ltd.

Ariel UC THz facility

Ariel UC THz facility

Manufacturer

1 THz source GBWO-103 0.8 - 1.1 THz GYCOM Nizhny Novgorod, Russia

- 2 Pyro-electric Detector
 (based on LiTaO₃ Crystal)
- 3 High-Performance Mid-Range Travel Linear Stage ILS-100PP With Universal Motion controller ESP-300
- 4 THz Absolute Power Meter System

Microtech Instruments, Inc

Newport Corporation

Thomas Keating Ltd, UK

Experimental set-up

Top view

Optical scheme

THz lenses

MaterialPolyethyleneCost in-house prod.\$ 75Cost Microtech Inc.\$ 700

Experimental set-up

Transmission mode

- + : Absorption measurable
- : Impossible to measure high-loss samples

Experimental set-up

Reflection mode

Impossible to measure absorption

+ : Possible to measure high-loss samples (refraction index)

Reflection - quantitative

Fresnel formulas

 $R(TE) = | r(TE) |^2$ $R(TM) = | r(TM) |^2$

where

r (TE) = { cos (
$$\theta$$
) - $\sqrt{\left[\epsilon - \sin^2(\theta)\right]}$ /
{ cos (θ) + $\sqrt{\left[\epsilon - \sin^2(\theta)\right]}$ }

r (TM) = { $\epsilon \cos(\theta) - \sqrt{[\epsilon - \sin^2(\theta)]}$ / { $\epsilon \cos(\theta) + \sqrt{[\epsilon - \sin^2(\theta)]}$ }

 θ – angle of incidence ϵ – complex dielectric constant

Reflection - quantitative

Theory: reflection depends on absorption

Practice: the dependence is negligible, unless absorption unreasonably high

Measurements : Powders

Summary and Outlook

1. Through-clothes imaging is feasible

2. Identification of chemical hazards is feasible

"Terahertz has the opportunity to be a breakthrough technology that can be used in several large markets within non-destructive testing, homeland security and defense. It is entering the high reliability application and market development phase, which will take some time to blossom."

R. Kurtz, The Wall Street Transcript, Mar 2007