Yehoshua Socol

High-Power Beams in Defense and Security

Acknowledgements

```
Y.Pinhasi,
           M.Einat,
B.Kapilevich, A.Yahalom, D.Hardon (CJS)
           (TAU) Y.Krasik
                               (Technion)
A.Gover
G.Falkovich, V.Fisher (Weizmann Inst)
I. Shoshan (ELOP)
Z.Schneider (ELTA) Y.Danziger (RAFAEL)
G.Avital
           (Elbit) A.Shor
                               (Soreq)
           (IAP) N.Vinokurov (BINP)
V.Bratman
A.Narodetskiy, R.Rovinskiy
```

Contents

- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare:
 DIRCM, gyrotrons and e-bombs
- Conclusions

Defense vs. Security

- Defense: Military tasks / Army
- Security: Law enforcement tasks / Police

■ **LIC** — Low Intensity Conflict Army / police tasks -> ⊗

Laser Beam – hit factors

Heat and detonate (deflagrate)
" Rapid cook-off "

Kick and destroy

 laser ablation <-
 thermo-nuclear fusion

Laser Heating

Detonation/Deflagration

```
\Delta t \sim 200 °C
Steel: c \sim 0.5 J / g °C (3R \sim 25 J/mol)
c \Delta t \sim 100 J / g
```

```
\rho = 7.8 \text{ g / cm}^3
thickness ~ 3 mm -> m ~ 3 g / cm<sup>2</sup>
c \Deltat m ~ 300 J / cm<sup>2</sup>
A ~ 5x5 cm -> Q \sim 10 \text{ kJ}
```

Laser Ablation

Shock destruction

Fe boiling: Impact $P \sim Q / V_z$ Fe vapor – molecular velocity $V_z \sim 500 \text{m/s}$ $\text{mv}_z^2 / 2 = \text{kT} / 2$ $T \sim 3000 \text{K} \sim 0.25 \text{ eV}$ $m \sim 60 \text{ GeV} / \text{c}^2$

Q = 10 kJ

 $P \sim 20 N s$ $T= 1 \mu s \rightarrow F \sim 2 Kton$

Plasma Formation

- USSR NPO "Astrophysics" 1969-1985
- Initial idea: anti-ICBM (SDI analog)laser ablation -> kick and destroy

Plasma formation threshold, CO₂ laser irradiation

		Glass	Quartz	Al	PMMA	LiF
E (threshold) J/cm ²	2μs	1.4	3.6	2.2	9.0	8.0
E (threshold) J/cm ²	10μs	1.7	3.6	6.5	13.0	15.0

Lasers vs. Kinetic

1 Horse Power (hp) = 736 W

Typical laser 100 W average High-Power 10 kW average

- 100 kW = 135 hp ~ light truck
- 1 MW = 1350 hp \sim 4 trucks, <"Merkava"

Lasers vs. Kinetic

Typical laser (pulse) "Nautilus"

 $E \sim 0.1 J$

 $E \sim 100 \text{ kJ}$

- Bullet (10g, 1000 m/s)
- Hand grenade (8g explosive)

 $E \sim 5 \text{ kJ}$

 $E \sim 30 \text{ kJ}$

Lasers may be cost-effective

only

against extremely important targets

Anti-Missile Counter-Measures

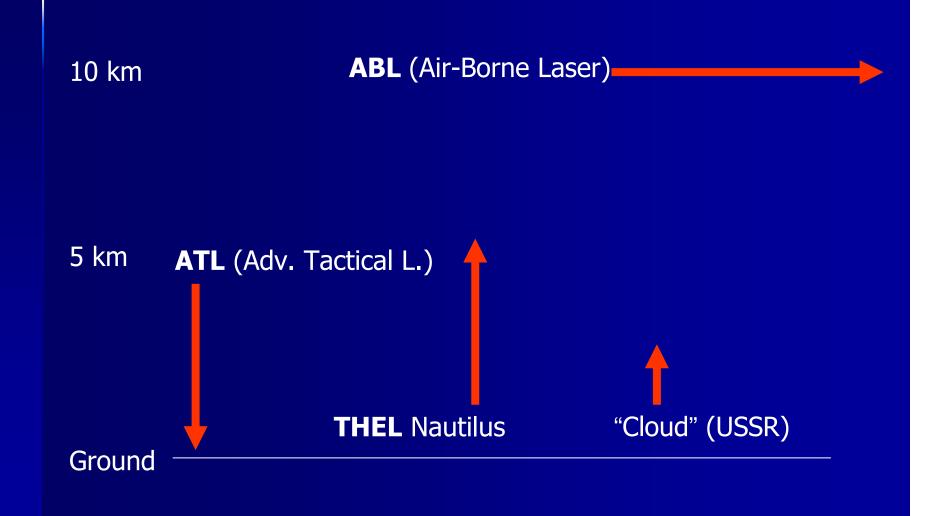
High-Power Lasers

```
Solid State: heating -> thermal lensing...
```

Therefore:

- Gas lasers ("Naultilus")
- Vacuum devices

FEL / FEM


free electron laser/maser

CRM (Gyrotron) – cyclotron resonance maser (ADS)

High-Power Gas Lasers

	Wavelengh
	μm
COIL	1.315
Chemical Oxygen Iodine Laser	
DF Deuterium Fluoride	3.8
CO ₂	10.6

HELWS projectsHigh-Energy Laser Weapon Systems

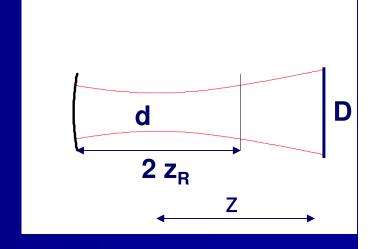
Contents

- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare:
 DIRCM, gyrotrons and e-bombs
- Conclusions

Beam propagation – factors

- Diffraction-limited divergence
- Normal attenuation in air
- Atmospheric turbulence (scattering)
- Self-focusing and break-down
- Plasma formation (target)

Beam propagation -

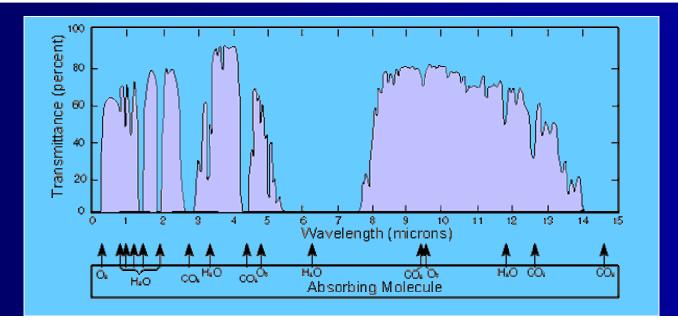

focusing

Gaussian beam – diffraction-limited spot

- $d = 2 w_0 waist (focus) diameter$
- \blacksquare D = 2 w(z) focusing mirror diameter
- \blacksquare λ wavelength, z distance to target
- $\pm w_0 = \pm 2\sigma$ (Energy)

$$d \sim 4 z \lambda / \pi D$$

if
$$D > 4 \sqrt{z \lambda / \pi}$$


$$w(z) \sim z \lambda / \pi w_0$$

$$z > 2 z_R z_R = \pi w_0^2 / \lambda$$

$$z = 5 \text{ km}, \lambda = 3.8 \mu\text{m}, D=50 \text{ cm} -> d \sim 5 \text{ cm}$$

Beam propagation

	λ, μm	Attenuation (atmosphere)
Nd:YAG	1.06	30%
COIL Chemical Oxygen Iodine Laser	1.315	50%
HF Hydrogen Fluoride	2.7-2.9	100%
DF Deuterium Fluoride	3.8	10%
CO ₂	10.6	20%

Beam propagation

Scattering

■ Scattering $\sigma \sim \omega^4 \sim 1 / \lambda^4$

• $\sigma(\text{Nd:YAG}) \sim 2 \sigma(\text{COIL}) \sim 150 \sigma(\text{DF})$ 1.06 μm 1.315 μm 3.8 μm

HELWS projects High-Energy Laser Weapon Systems

ABL (Air-Borne Laser) 10 km 5 km ATL (Adv. Tactical L.) Turbulent air Ground **THEL** Nautilus "Cloud" (USSR)

Beam propagation

Non-linear effects

DC break-down (avalanche)

E_{b-d} 30 kV/cm

P 2.5 MW/cm²

Holds up to ∼10 GHz (microwaves)

Optical break-down

E_{b-d} 1000-10,000 kV/cm

P 2.5-250 GW/cm²

Self-focusing (collapse, filamentation)

Contents

- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare:
 DIRCM, gyrotrons and e-bombs
- Conclusions

Target Missiles

■ Range 100 km -> non-limited

Velocity 2000-8000 m/s

Accuracy ~500m (50m for tactical)

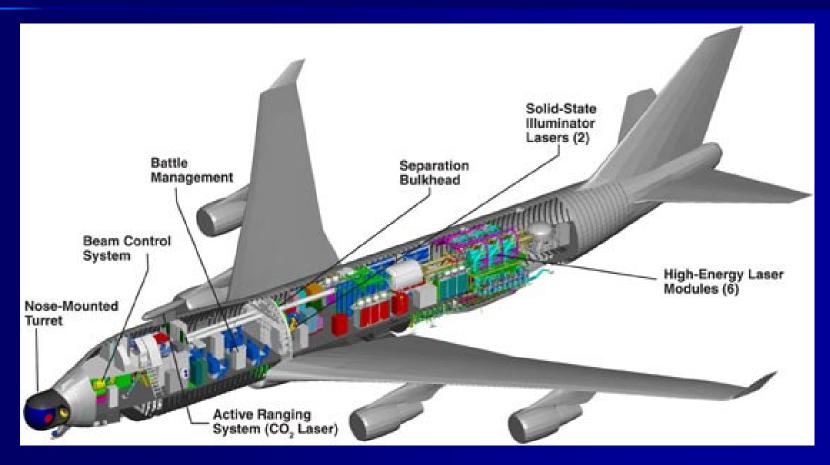
Warhead 500kg -> Nuclear

Nuclear Warheads

"Atomic" 1-20 Kton

destruction range ~1 km

"Hydrogen" 100-1000 Kton


(thermo-nuclear)

destruction range ~3-4 km

Hiroshima: 15 Kton LD₅₀ 0.5 km

 $P\sim 1/r^3$

ABL – Airborne Laser D, LIC

Courtesy: Boeing

ABL – Airborne Laser

■ Target Tactical ballistic missiles

at boost stage

Range 500 km

■ Laser COIL 1.315 µm

■ Power ~ 1 MW

Pumping Chemical

Weight 300 ton

Lay-out Boeing 747-400F (320 ton)

Laser installation on board: 2007

ATL – Advanced Tactical Laser

Target Urban warfare, ...

Range 20 km

Laser COIL 1.315 µm

■ Power ~ 1 MW

Pumping Chemical

Lay-out C-130H Hercules

Test program: 2007 - 2009

Contents

- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare:
 DIRCM, gyrotrons and e-bombs
- Conclusions

USSR

NPO "Astrophysics" 1969-1985

	"Stilet" (Dirk)	"Oblako" (Cloud)
Laser type	Nd-Glass	CO ₂
Wavelength	1.06µm	10.6μm
Pumping	Flash lamp	300kV e-beam
Pulse energy	3kJ	30kJ
Pulse length	10μs	2μs
Action	Glass destruction (thermal shock)	Plasma formation Jamming imagers
Lay-out	Armored vehicle	Two 30-ton platforms

Nautilus -> THEL LIC

Tactical High-Energy Laser

1996-2006

Photo: Northrop Grumman

Target:	Rocket MRL	Cannon 122-155mm
Range, km Velocity, m/s Accuracy, m at 2/3 range	20-30 250-300 ~150	12-15 600-1200 ~25
Warhead, kg Fire rate per 20s	20-25 40	5-10 ∼1

Nautilus – THEL LIC

Range
Principle
Laser type
Power
Pumping

Cost per shot Beam diameter

Successful hits Project cost

Main contractor Sub-contractors 5 miles

Heating

Deuterium Fluoride

100 kW

Chemical

\$ 3000

~ inches

28

Fuel only!!!!!

1996-2004

> **\$ 300M** 1996-2004

Northrop Grumman, USA ELTA, RAFAEL, ...

Anti-Nautilus

Possible counter-measures

Reflective coating

Heat hardening

THEL -> MTHEL (Mobile)

Main contractor Northrop Grumman, USA

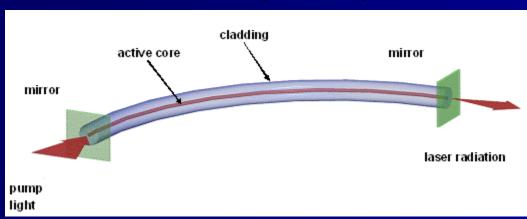
Sub-contractors ELTA, RAFAEL,

Lay-out Three 20-ton semi-trailers

Estimated cost \$ 300-400M (?)

Project terminated Jan 2006

SkyGuard (counter-Manpads): \$1.9M


Contents

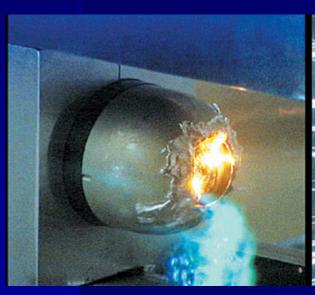
- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare:
 DIRCM, gyrotrons and e-bombs
- Conclusions

High-Power Solid-State

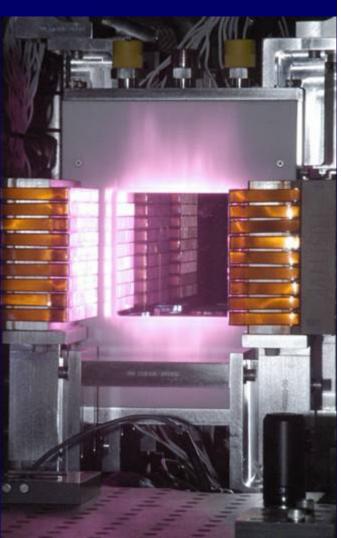
Present trends:

fiber, disk, ...

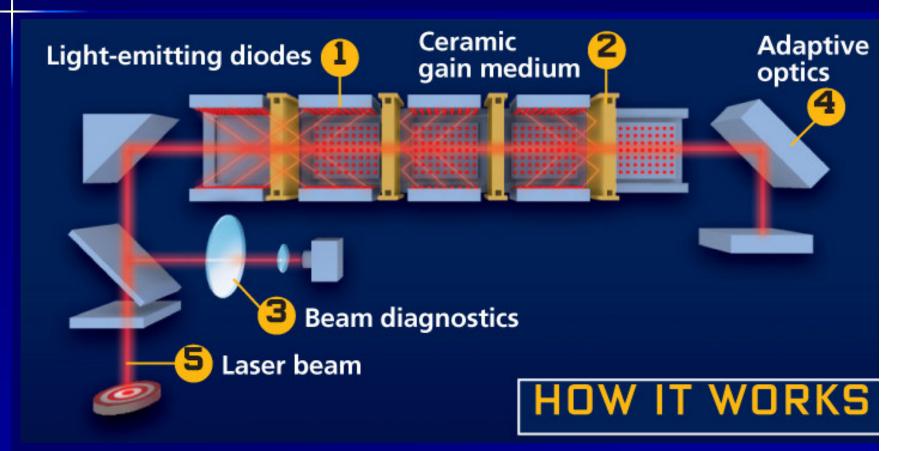
IPG Photonics: 10 kW (CW), 1.06 μm


1000 kg, 25% eff. (wall-plug)

Incoherent adding!


High-Power Solid-State

Present trends:
fiber, *disk*, ...



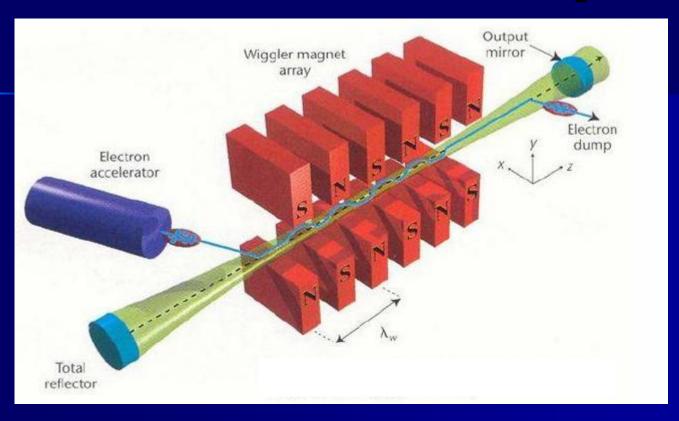
Lawrence Livermore National Laboratory Nd:YAG 45kW (CW)

High-Power Solid-State

Lawrence Livermore National Laboratory

Nd:YAG 45kW

High-Power Solid-State


Current projects ~ 1.06 μm

Power, kW (CW)

Northrop Grumman	15
■ Raytheon (Phase Conj. Mirror Loop)	3
Textron	15
LLNL (5 slabs)	67

Scattering!

Free Electron Laser (FEL)

E-beam energy

Wavelength

Power (average)

Power (peak)

20-80 MeV

3-150 μm

10-100 W

MW +

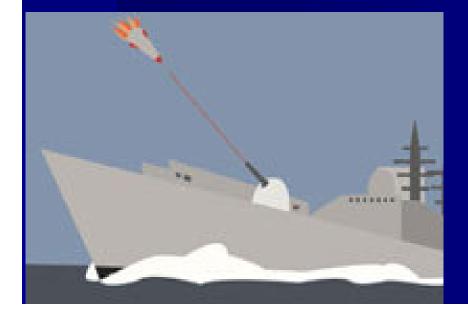
FEL

Advantages

- Vacuum device => High Power
- Tunability

Disadvantages

- High-energy (20-80MeV) electron beam
 - accelerator needed
 - ionizing radiation
- Size and weight


Jefferson Lab FEL

Funding: US Navy

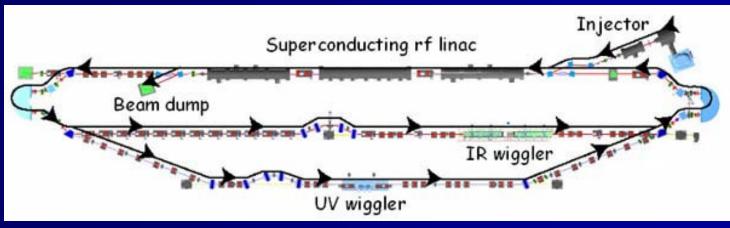
= 2004 10 kW 6 μm

■ 2006 14.2 kW 1.6µm

Target power: 100 kW

Jefferson Lab FEL

Funding: US Navy


Project funding

2006 \$ 14M

2007 - 2014 \$ 180M

in 8 years

Contents

- Lasers as Weapons
- Beam Propagation
- Airborne Lasers ABL, ATL
- Ground-based: "Cloud", "Nautilus"
- Current trend: Solid-State, FEL
- Electronic Warfare
 DIRCM, gyrotrons and e-bombs
- Conclusions

Shoulder-fired missiles

Manpads (man-portable air defense system)
anti-tank

Range 3-6 km

Speed 250-600m/s

Accuracy <1 m</p>

■ Warhead ~1 kg

Laser Beam – hit factors

"Primitive"

- Heat and detonate
- Kick and destroy

"Advanced"

- Jam missile imager
- Destroy imager

(self-guiding) (self-guiding)

Counter-manpads

S-D

DIRCM Directed Infrared Counter-Measures

- 2002 "Medusa": 3 phases
- 2008 complete flight demonstrations
- Phase I

BAE Systems, Northrop Grumman, Lockheed Martin

Phase III \$ 109M
 BAE Systems (JetEye)
 Northrop Grumman (Guardian)

Counter-manpads

S-D

DIRCM Directed Infrared Counter-Measures

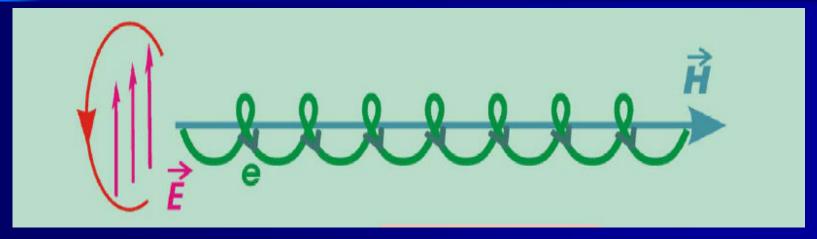
Northrop Grumman (SkyGuard)

Lay-out External pod

Weight 220 kg (500 lb)

Unit cost \$ 2.1M

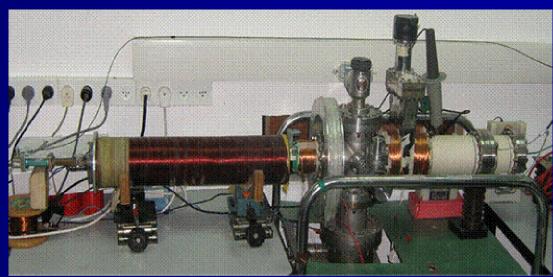
US fleet protection cost


Capital investment \$ 11,000M

Per flight \$ 365

(including extra ~1% fuel)

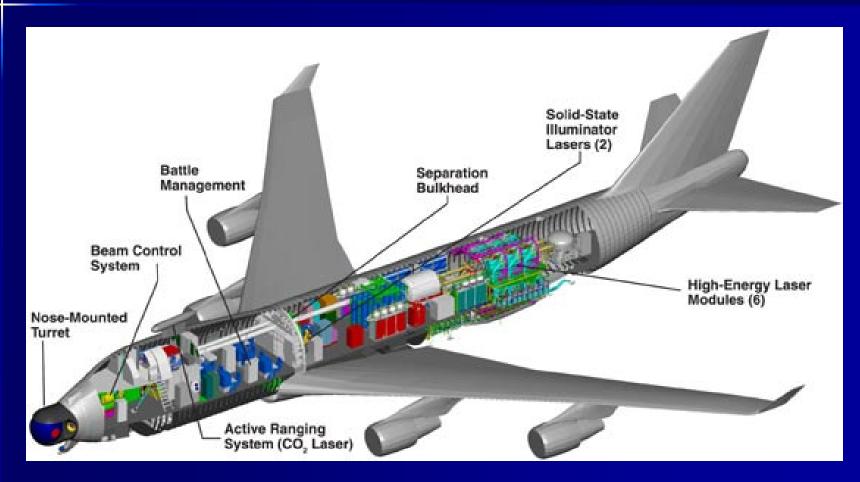
Gyrotron – CRM


Cyclotron Resonance Maser

YOSH Gyrotron

Frequency 6.7 GHz

Power 1 kW


Gyrotrons – the state of the art TOSHIBA GYCOM THALES **CPI**

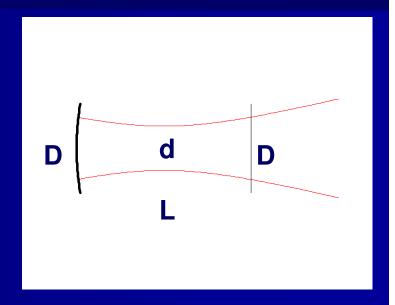
Frequency <800 GHzPower (CW) 1 MW at 170 GHz

Pulse duration 20 s

■ Efficiency 45 %

GYCOM 1MW Gyrotron

1 MW COIL laser


Gyrotron

S-D

Electronic Warfare; non-lethal weapon

$$w_0 = \sqrt{L \lambda / 2 \pi}$$

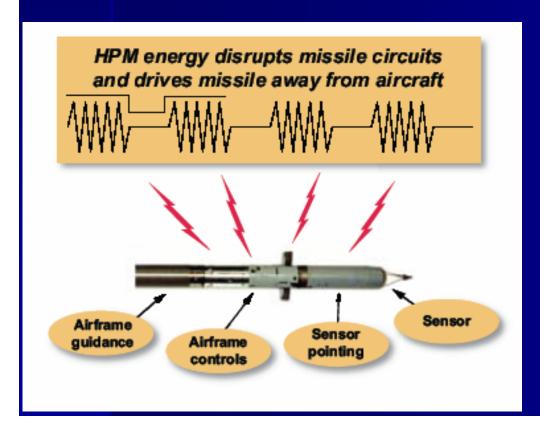
D (antenna) = $2\sqrt{2}$ w₀ L= π D² / 4 λ

$$\lambda = 3 \text{ mm}$$

D (antenna)=4m

D (antenna) = 2m

D (antenna)=1m


L = 4000 m

L = 1000m

L = 250m

Vigilant Eagle Airport Protection System

Raytheon

18-month, \$ 4.1M not testing HPM! (high-power microwave)

Gyrotron

S,LIC

ADS - non-lethal weapon

"Despite an enormous degree of hype, and considerable investment for more than a decade, the deployment of a tactical high-power microwave (HPM) weapon — a reusable mobile transmitter capable of damaging a range of targets — is some way off."

Jane's Defence Weekly 25.08.2006

World Tribune 03.02.05 ADS – Active Denial System

f = 95 GHz

L= 1 km

To be deployed: 08.2005

E-bomb

Explosively-Pumped
 Flux Compression Generator
 Pulse energy ~ 10⁷ J
 Pulse duration ~ 10-100 μs

Conclusions

- Considerable activity
- Expectations are still far ahead of the achievements
- High-cost targets should be considered
- Novel means of Electronic Warfare
 (gyrotron, e-bomb etc.) still await verification